机器学习笔记之正则化

一、前言——过拟合 我们知道,经过一组点可以有无数条曲线。这些曲线对于这组样本点的损失函数同为 0。但是对于预测来说,这些曲线产生的结果却并不相同。这就意味着,进行梯度下降到达某一最低点时,依旧不一定能得到“最好的”预测(拟合/分类)效果。甚至可能对于一些情况,此时的(预测/分类)效果反而更差了。这样的情况就称为过拟合。 过拟合的存在是很合理的。从感性上讲,将机器学习的过程类比人类的认知,一个观念的形成不能超出经验之外,认知的结果永远是片面而非客观的。那么在与更广泛的客观现实接触之前,我们必然无法得知已经形成的认知是否是依旧可以应用的。 这是一个很休谟的观点。但却无法解决现实问题。我们依旧需要找到减少过拟合的方法。 二、惩罚 我们的思想中存在着一种先验观念,它规范天地万物,在冥冥中告诉我们什么是“合理的”。对于机器学习模型来说也是一样的,它应当具有这样的机制,告诉它什么情况是不可能的。 就比如说,对于房价,我们知道一些特征是更加重要的,而另一些是更加不重要的。很显然,那些更重要的特征对应的权重应该较不重要的特征对应的权重大。那么我们就需要对那些不重要的权重进行“惩罚”,以避免这些权重过大,从而导致模型过拟合。这样的“惩罚”在损失函数中体现。即,当这些权重过大时,损失函数也会相应增大。 具体而言,对如下的表达式 $$ y = w_1x_1 + w_2x_2 + w_3x_3 + b $$ 假设要使第二、三个权重相对较小,则可以在损失函数中加上惩罚项 $\lambda_2 w_2 + \lambda_3 w_3$。其中 $\lambda_2, \lambda_3$ 取较大值。则损失函数变为 $$ J_{new}(\vec{w}, b) = J(\vec{w}, b) + \lambda_2 w_2 + \lambda_3 w_3 $$ 具体地比如说 $$ J_{new}(\vec{w}, b) = J(\vec{w}, b) + 1000 w_2 + 2000 w_3 $$ 那么此时很显然,当 $w_2, w_3$ 较大时,损失函数也会相应更大。 可是对于大多数情况,我们无法事先知晓权重的重要程度。对于这些一般化的问题,还需要有一般化的解决办法。 三、正则化 正则化是惩罚的一种。该方法在损失函数中增加了正则项: $$ \frac{\lambda}{2m} \sum_{j=1}^n w^2_j $$ 其中 $\lambda$ 称为正则化参数。...

十月 8, 2022 · 1 分钟 · 143 字 · Wokron

机器学习笔记之逻辑回归

一、前言——逻辑分类 机器学习研究的另一种问题为分类问题。给出一些信息,判断是或不是某种物体、属性。比如说给出病人的各项检测指标,判断其是否患病。 对于是、否的判断,这里用 1、0 表示。则训练样本就与之前的线性与多项式回归样本类似。 我们可以试着用一元线性回归来拟合分类问题的样本。 比如对于如下的样本数据 进行一元线性回归后得到 我们将数值大于 0.5 的部分看做预测为真,小于 0.5 的部分看做预测为假。可以看到,此时一元线性回归就已经可以使所有样本点符合判断结果了。 但如果我们在 x 值更大的区域增加更多的样本点,再进行回归 可以看到,有一部分应为 1 的点被分在了 y < 0.5 的部分,被预测为 0。这说明只凭线性回归无法解决分类问题。我们需要另一种回归方法。 二、逻辑回归 线性回归失效的原因在于,拟合的目标是对所有点的方差最小,在分类边界上的样本可能因为其他样本的影响而被分到另一类。而为什么会受到其他样本的影响呢?因为线性回归得到的表达式值域趋向于无穷;而样本的结果却只有 0、1。所以对于一个样本,只要它的特征数值足够大或足够小,就足以产生极大的损失。(为什么可能出现足够远的样本?因为分类问题需要划分出一个边界,在边界两侧可能存在足够大的范围。) 我们要对线性回归进行修改,需要将回归得到的表达式的值域缩小到 0 至 1 的范围。 这里引入 Sigmoid 函数 $$ S(z) = \frac{1}{1 + e^{-z}} $$ 它的图像如下 该函数定义域为 $(-\infty, +\infty)$,值域为 $(0, 1)$ 假设原本线性回归的函数为 $$ f_{\vec{w}, b}(\vec{x}) = \vec{w} \cdot \vec{x} + b $$ 则现在令 $$ f_{\vec{w}, b}(\vec{x}) = S(\vec{w} \cdot \vec{x} + b) $$ 即 $$ f_{\vec{w}, b}(\vec{x}) = \frac{1}{1 + e^{\vec{w} \cdot \vec{x} + b}} $$ 为新的函数。其中 $S(z)$ 即为 Sigmoid 函数。这样,表达式的值域就缩小为了 $(0, 1)$,从而消除了值域对损失的影响。...

十月 5, 2022 · 2 分钟 · 311 字 · Wokron

机器学习笔记之多项式回归

一、引言——拟合多项式 考虑如图所示的样本数据: 如果我们用一元线性回归去拟合该数据,会发现直线与数据点拟合效果很差。 通过观察,我们很容易得知数据点满足二次函数,具体地,函数是 $\frac{1}{2}x^2 + 5$。既然用直线 $y = wx + b$ 不能拟合,那么换用二次函数 $y = w_1x^2 + w_2x + b$ 拟合的话效果会如何? 二、多项式回归的步骤 对于一元多项式函数 $$ y = w_1x + w_2x^2 + \cdots + w_nx^n + b $$ 令 $x^i = y_i$,则原函数变为 $$ y = w_1y_1 + w_2y_2 + \cdots + w_ny_n + b $$ 对于自变量 $x$,只需将 $x^2, x^3, \cdots, x^n$ 看成与 $x$ 不同的特征。此时一个一元多项式函数的拟合问题就转变成了我们已知的多元线性拟合问题。同理,对于多元多项式函数,也可以将其转化为多元线性函数进行拟合。 三、代码实现 对于如下样本: x = np.array(range(-1, 10)) y = (x ** 2) / 2 + 5 将 $x^2$ 也作为一个特征...

十月 1, 2022 · 1 分钟 · 166 字 · Wokron

机器学习笔记之特征缩放

一、引言——参数数值对权重的影响 考虑有两个特征的房价预测。其一为房子面积,其二为卧室数量。参数的范围为 $$ x_1 \in [300, 2000] \\ x_2 \in [0, 5] $$ 预测直线为 $$ y = w_1x_1 + w_2x_2 + b $$ 从感性上认知,如果 $w_1$ 的数值大于 $w_2$,那么由特征 $x_1$ 贡献的房价就会远大于特征 $x_2$。因为这样的话,对于同等数值的变化,特征 $x_1$ 的贡献变化大于 $x_2$,而 $x_1$ 的范围又更大,则其对贡献的变化也会更加得大。这是很不合常理的。因此从感性上讲,$w_1$ 的数值应该小于 $w_2$。 另外,根据损失函数的定义 $$ J(\vec{w}, b) = \frac{1}{2m}\sum_{i=1}^{m}(\vec{w}\cdot\vec{x}^{(i)} + b - y^{(i)})^2 $$ 当损失函数值固定时,改变权重 $w_1$, 则对应的权重 $w_2$ 的变化要大于 $w_1$。从图像来说,此时损失函数形成陡峭的“山谷”,它的等高线图类似于椭圆。这时进行梯度下降,在步长较大时可能出现在“崖壁”上来回跳跃的情况。 为了避免这种情况,我们需要找到一种优化的方法。 二、特征缩放 我们要做的是避免出现不同特征的范围差距较大的情况。那么对于极差较大的特征,我们需要将其数值所在的区间范围缩小。这就是特征放缩。 在进行过特征放缩后,损失函数从图像上看将会较原来更接近正圆形,这样的话,寻找通向最低点的路径将会更加容易。 特征缩放有许多不同的方法,如: 除数特征缩放 均值归一化(Mean normalization) Z-score标准化(Z-score normalization) 除数特征缩放指的是将该特征的所有值同除以某一个数,比如说最大值。 $$ x_{scaled} = \frac{x}{x_{max}} $$ 均值归一化是以均值为参照对所有数值进行缩放,公式: $$ x_{scaled} = \frac{x - x_{mean}}{x_{max} - x_{min}} $$ Z-score标准化将数值转换为正态分布。公式: $$ x_{scaled} = \frac{x - \mu}{\sigma} $$ 其中 $$ \mu = \frac{1}{m}\sum_{i = 1}^m x^{(i)} \\ \sigma^2 = \frac{1}{m}\sum_{i = 1}^m (x^{(i)} - \mu)^2 $$ 三、代码实现 利用 Z-score 标准化对特征进行缩放...

十月 1, 2022 · 1 分钟 · 175 字 · Wokron

机器学习笔记之多元线性回归

一、引言——多特征的房价预测 现实中,某一变量并不一定只与单一变量有关。还以房价来举例,除了位置以外,房价还可能与房子面积、卧室数量、层数、房龄等因素有关。 面积 卧室数 层数 房龄 房价 2104 5 1 45 460 1416 3 2 40 232 1534 3 2 30 315 852 2 1 36 178 … … … … … 对于多个特征的情况,我们需要对之前的一元线性回归进行推广。但在此之前,需要先约定一下使用的符号: 和前面一样,这里将用 $x^{(i)}$ 表示第 i 组样本中的特征。 $y^{(i)}$ 表示第 i 组样本对应的目标结果。不同的是,对于第 j 个特征组,也就是第j个特征对应的数值的序列,采用 $x_{j}$ 表示。那么很自然的, $x^{(i)}_j$ 表示第 j 个特征中的第 i 个值,或者说表示第 i 组样本中的第 j 个特征。 与上文中的列表相结合进行理解,相当于 $x^{(i)}$ 表示第 i 行中非房价的部分,$x_{j}$ 则表示第 j 列中的数值。 要对多元特征进行拟合,也就是找到适当的 $w_1, w_2, ..., w_n$ 使得对任意的 i,有 $$ y^{(i)} = w_1 * x^{(i)}_1 + w_2 * x^{(i)}_2 + ....

九月 26, 2022 · 3 分钟 · 609 字 · Wokron

机器学习笔记之一元线性回归

一、引言——房价预测问题 问题: 假设我们知道一些房价与距离的对应关系,通过这些已知的信息,能否预测在一定范围内任意距离对应的房价? 首先考虑最为简单的情况,也就是只有两个房价信息的情况。 如图所示,1km时对应房价为300,2km 时对应房价为500。很容易可以在这两点间连一条直线,这条直线就可以作为对房价的预测。这样用曲线对已知数据中的关系进行估计的方法称为拟合。 (注意,本文只考虑以一元线性函数进行拟合) 类似的,增加房价信息为三个点,如果三点共线,则该直线依然可以作为对房价的拟合。 但更可能的情况是三点不共线,对于更多的数据的情况则更是如此。这样的话要如何找到一条直线来拟合房价信息呢? 二、损失函数 我们需要找到一种标准来衡量直线对已有信息的拟合程度。 假设当前直线为: $$ y = wx+b $$ 房子距离为 $x^{(1)},x^{(2)},x^{(3)}...,x^{(m)}$,对应的房价为 $y^{(1)},y^{(2)},y^{(3)}...,y^{(m)}$。 则对于每个距离 $x^{(i)}$,当前直线所预测的房价为: $$ \hat{y}^{(i)} = wx^{(i)} + b $$ 该房价与真正的房价的差距为 $$ d = |y^{(i)} - \hat{y}^{(i)}| $$ 绝对值不可导,不妨用平方来代替 $$ d_2 = (y^{(i)} - \hat{y}^{(i)})^2 $$ 对于每个已知的房价信息,当前直线的预测都可能会有偏差,将这些偏差求和得到总的偏差 $$ \sum_{i=1}^{m}(y^{(i)} - \hat{y}^{(i)})^2 $$ 为了排除样本数量不同对偏差的影响,将偏差总和除以样本数量 $$ \frac{1}{m}\sum_{i=1}^{m}(y^{(i)} - \hat{y}^{(i)})^2 $$ 这也就是总体方差的计算式: $$ \sigma^2 = \frac{1}{m}\sum_{i=1}^{m}(y^{(i)} - \hat{y}^{(i)})^2 $$ 对于机器学习,我们将$\hat{y}^{(i)}$展开,并将方差除以2,得到一元线性回归的损失函数(loss function),即 $$ J(w, b) = \frac{1}{2m}\sum_{i=1}^{m}(y^{(i)} - wx^{(i)} - b)^2 $$ 在 $x^{(i)}$,$y^{(i)}$ 确定的情况下,损失函数是关于 $w$ 和 $b$ 的连续可导的二元函数。该函数可以用来衡量 $w,b$ 所确定的直线与已知数据之间的偏差。...

九月 25, 2022 · 2 分钟 · 361 字 · Wokron